102 research outputs found

    Distortion and Signal Loss in Medial Temporal Lobe

    Get PDF
    Background: The medial temporal lobe (MTL) contains subregions that are subject to severe distortion and signal loss in functional MRI. Air/tissue and bone/tissue interfaces in the vicinity of the MTL distort the local magnetic field due to differences in magnetic susceptibility. Fast image acquisition and thin slices can reduce the amount of distortion and signal loss, but at the cost of image signal-to-noise ratio (SNR). Methodology/Principal Findings: In this paper, we quantify the severity of distortion and signal loss in MTL subregions for three different echo planar imaging (EPI) acquisitions at 3 Tesla: a conventional moderate-resolution EPI (36363 mm), a conventional high-resolution EPI (1.561.562 mm), and a zoomed high-resolution EPI. We also demonstrate the advantage of reversing the phase encode direction to control the direction of distortion and to maximize efficacy of distortion compensation during data post-processing. With the high-resolution zoomed acquisition, distortion is not significant and signal loss is present only in the most anterior regions of the parahippocampal gyrus. Furthermore, we find that the severity of signal loss is variable across subjects, with some subjects showing negligible loss and others showing more dramatic loss. Conclusions/Significance: Although both distortion and signal loss are minimized in a zoomed field of view acquisition with thin slices, this improvement in accuracy comes at the cost of reduced SNR. We quantify this trade-off between distortion and SNR in order to provide a decision tree for design of high-resolution experiments investigating the functio

    Theodicy and End-of-Life Care

    Get PDF
    Acknowledgments The section on Islamic perspective is contributed by information provided by Imranali Panjwani, Tutor in Theology & Religious Studies, King's College London.Peer reviewedPublisher PD

    Determination of ÎČS haplotypes in patients with sickle-cell anemia in the state of Rio Grande do Norte, Brazil

    Get PDF
    ÎČS haplotypes were studied in 47 non-related patients with sickle-cell anemia from the state of Rio Grande do Norte, Brazil. Molecular analysis was conducted by PCR/RFLP using restriction endonucleases XmnI, HindIII, HincII and HinfI to analyze six polymorphic sites from the beta cluster. Twenty-seven patients (57.5%) were identified with genotype CAR/CAR, 9 (19.1%) CAR/BEN, 6 (12.8%) CAR/CAM, 1 (2.1%) BEN/BEN, 2 (4.3%) CAR/Atp, 1 (2.1%) BEN/Atp and 1 (2.1%) with genotype Atp/Atp. The greater frequency of Cameroon haplotypes compared to other Brazilian states suggests the existence of a peculiarity of African origin in the state of Rio Grande do Norte

    Management of hepatitis C virus genotype 4: recommendations of an international expert panel.

    Get PDF
    HCV has been classified into no fewer than six major genotypes and a series of subtypes. Each HCV genotype is unique with respect to its nucleotide sequence, geographic distribution, and response to therapy. Genotypes 1, 2, and 3 are common throughout North America and Europe. HCV genotype 4 (HCV-4) is common in the Middle East and in Africa, where it is responsible for more than 80% of HCV infections. It has recently spread to several European countries. HCV-4 is considered a major cause of chronic hepatitis, cirrhosis, hepatocellular carcinoma, and liver transplantation in these regions. Although HCV-4 is the cause of approximately 20% of the 170 million cases of chronic hepatitis C in the world, it has not been the subject of widespread research. Therefore, this document, drafted by a panel of international experts, aimed to review current knowledge on the epidemiology, natural history, clinical, histological features, and treatment of HCV-4 infections

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    Recent developments in genetics and medically assisted reproduction : from research to clinical applications

    Get PDF
    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.Peer reviewe
    • 

    corecore